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PROPAGATION OF A PLANAR SHOCK THERMAL WAVE IN 

A NONLINEAR MEDIUM 

O. N. Shablovskii UDC 536.2.01 

Conditions are analyzed for a strong discontinuity of a thermal field in a 
nonlinear medium, possessing thermal relaxation. The solution of the heat- 
transfer equations is obtained in the region between the mobile boundaries 
and the front of the strong discontinuity. 

i. Analysis of Strong Discontinuity Conditions of a Thermal Field. The heat-transfer 
equations in a medium with a relaxing thermal flow [I, 2] are written in the following form 
for one-dimensional processes with planar symmetry 

ph t §  q~ = O, 9, ?- -cons t ,  (1)  

T T 

L ~ q - g q , + q = O ,  h =  fc~(T)dT, L =  I)~(T)dT. (2) 

Shock thermal waves can be generated in nonlinear media possessing thermal relaxation [2, 
3]. In particular, an important object of application of the heat-transfer model (i), (2) 
are thermal perturbations in liquid helium [4, 5]. It is well known that second sound 
shock waves can occur in liquid helium at temperature 1.2K < T < 2.0K; the physical analysis 
of this effect and a bibliography are given in [5, 6]. In the presence of relaxation pro- 
perties of the medium surfaces of strong discontinuity are also formed in other physico- 
mechanical processes, for example, in liquid filtration [7]. This question is discussed in 

[2 ] .  

To obtain conditions of dynamic compatibility at the strong discontinuity line of the 
thermal field the energy conservation law must be selected in integral form, and then the 
method of [8, 9] must be applied: 

N {9/~} ::-~ {q}, N = dx/dt. (3) 

Here the brackets denote the jump of the corresponding functions during transition through 
the strong continuity line x = xj(t). 

Also possible are statements of the heat-transfer problem, in which the single condition 
(3) is insufficient to guarantee uniqueness of the solution, and, according to [9], an addi- 
tional relation is required at the discontinuity. 
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Consider, for example, a thermal process with xe[xb, xj]. If only one boundary condi- 
tion is known at the boundary x = xb(t), for unique determination of x = xj(t) one requires 
an additional condition at the discontinuity. To obtain this condition consider Eq. (2), 
following from the integral equation 

(~)~7 dt = --.i'~ ~( qdxdt, ( 4 ) S Ib + !" , ' ~  

XI Ii tl  A I 

where  x~,  x 2 f i x  t h e  s p e c i f i e d  v o l u m e ,  and t z ,  t 2 a r e  a r b i t r a r y  moments  o f  t i m e .  A p p l y i n g  
t h e  method  o f  [8 ,  9 ] ,  we o b t a i n  f rom (4 )  t h e  a d d i t i o n a l  c o n d i t i o n  a t  t h e  s t r o n g  d i s c o n t i -  
n u i t y  of the thermal field 

N {?q} = {L}. (5) 

I t  f o l l o w s  f rom r e l a t i o n s  ( 3 ) ,  (5 )  t h a t  N ~ 0, t h e r e f o r e  we c o n s i d e r  h e r e  a s t r o n g  d i s -  
c o n t i n u i t y ,  whose d i s p l a c e m e n t  v e l o c i t y  i s  d i s c o n t i n u o u s ,  r e t a i n i n g  i t s  u n c h a n g i n g  s i g n .  
We f u r t h e r  a s sume  t h a t  {p} = 0,  {~} = 0. 

C o n d i t i o n s  ( 3 ) ,  (5 )  can  be r e p r e s e n t e d  in  fo rm o f  t h e  r e l a t i o n s  

q~ - -  9Nh7 = qj - -  pghs = Q (xs, t) - -  Qj, Lj -= L (T~), ill = I~ (Tj), 
( 6 )  

?Nq~--  L ~ = y N q . i - - L j =  A(x~, /.)---~Aj, T j =  T(x:,  t), 

characterizing the discontinuity at the line x = xi(t) of the quantities Q = q - pNL, A = yNq 
- L, having, respectively, the dimensions of specilic thermal flow and thermal flow gradient 
(power gradient). We note that h(T), L(T) are discontinuous functions of temperature, while 
the brackets {h}, {L} are due to the discontinuity {T} ~ 0. 

It is easily seen that if X, Cp are continuous, it then follows from Eqs. (3) and (5) 
that N 2 = w 2 ~ ~/ypCp, i.e., the strong discontinuity degenerates into a continuous thermal 
Wave. 

The following conclusions are drawn from Eq. (6): i~ If Q~ = const, A~ = const, the 
.J D 

strong discontinuity of the thermal field, displaced toward a constant velocity, degenerates 
into a weak discontinuity, a continuous thermal wave. 2. If there exists a strong disconti- 
nuity, it moves according to the homogeneous thermal field T* ~ const, q* ~ 0 with a variable 
Velocity. 3. A strong discontinuity can be displaced with a constant velocity N ~ w ~ const 
only by the nonuniform thermal field T = T*(x, t), q = q*(x, t). 

Conditions (3), (5) are written in the form 

qJ - -  q7 = o N ( ~ - -  ~ ) ,  ( 7 )  

Lj - -  L7 = ?N (qj - -  qT). (8 )  

S u b s t i t u t i n g  (7 )  i n t o  ( 8 ) ,  we o b t a i n  

h: = h~ + (Mj - -  M))IoyN 2, N =~ 0, L (T) = M [h (T)]. ( 9 )  

I t  i s  a s sumed  t h a t  t h e  t h e r m a l  f i e l d  i s  g i v e n  a h e a d  o f  t h e  f r o n t  o f  t h e  s t r o n g  d i s c o n t i -  
n u i t y ,  and t h a t  t h e  v e l o c i t y  N = N ( t )  o f  t h e  d i s p l a c e d  d i s c o n t i n u i t y  i s  known. R e l a t i o n s  
( 7 ) ,  (9 )  a r e  t h e n  a l g e b r a i c  e q u a t i o n s  f o r  q j ,  h j ,  and t i m e  a p p e a r s  in  them as  a p a r a m e t e r .  
The f u n c t i o n s  q j * ( t ) ,  T * j ( t ) ,  N ( t )  a r e  assumed  t o  be c o n t i n u o u s  f o r  t e [ 0 ,  t k ]  , 0 < t k < ~;  
c o n s i d e r i n g  t h e  t h e r m a l  p r o c e s s  a t  an i n f i n i t e  i n t e r m e d i a t e  t i m e ,  we a s sume  t h a t  t h e s e  f u n c -  
t i o n s  a r e  b o t h  c o n t i n u o u s  and bounded .  We f u r t h e r  u s e  t h e  n o t a t i o n  t ~ [ 0 ,  t k ] ,  k e e p i n g  in  
mind b o t h  t h e s e  c a s e s .  Thus ,  we p u t  

0 < N ~ < N ( t ) < N ~ < ~ ,  tC[0, t~], 

O ~ T ~ T  i ( t ) ~ . T ; < ~ ,  - - ~  < q ,  ~ q ) ( t )  < q 2 < ~ .  (10)  

Equation (9) is convenient for calculating hj by the method of successive approximations. 
Sufficient convergence conditions of this iteration procedure to a unique solution in the 
interval [T', T"] consist of the following [ib]: i. The right-hand side of (9) satisfies 
the inequalities 

h" = h (T') ~ h~ + [M (hi) - -  M (h?)]/9?N 2 ~ h (T") : h", 

[T', T"]~_[T1, T~], T~(t)6[Tt,  Ti], hj(t)C[hl, hz], (11)  
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where T' and T" depend parametrically on t, 2. The following inequality is satisfied at 
each moment of time 

w2(Tj)<N2(t), T' < T~<T". (12) 

We carry out some estimates allowing to infer to what extent conditions (ii), (12) are 
satisfied. We take into account that h(T), L(T), and M(h) are monotonically increasing 
functions of their arguments, and we denote by T = ~(h) the inverse function to h = h(T). 
For the continuous function wi(T) we specify temperature intervals in which it increases 
or decreases monotonically, i.e., there exists an inverse function T = 0(w 2) < =. Taking 
into account Eq. (i0), instead of (ii), 412) we choose the cruder conditions 

2 W2 h, ~ h~ --}- (Ms --  M i )/p?N ~ h2, (Tj) < N~. (13) 

Let wi(T) be a monotonically increasing function. From 413) we then obtain at any mo- 
ment of time, and as upper temperature boundary behind a strong discontinuity one can take 

T2 = 0(N2)- -~2>0,  r > 0. (14) 

This number r can always be found,  s i n c e  0(w ~) i s  con t inuous .  F u r t h e r  approx imat ions  a r e  
o b t a i n e d  by means of  (10) ,  (14) ,  and some uncompl ica ted  t r a n s f o r m a t i o n s  of  i n e q u a l i t y  (13) .  
If T 2 > T I > 0, and the following inequality is valid 

h~ > h, + (M~Im, N~), 415 ) 

then for h2* the following estimate holds 

0 < h~ < h. 2 - -  (MJp?N~). ( 16 ) 

It is easily seen that in the presence of (15), (16), by a suitable choice of N2 > NI one 
satisfies the inequality 

* 2 * h2 --  (M2/p?N~) > h 1 + (M2/9~zN2), M~ = M (h2), ( 17 ) 

and the following estimate is then obtained for h!*: 

h, -k- (M*2/pTN 2) < h~ <h*2. (18) 

I t  f o l l o w s  from Eqs. ( 1 6 ) - ( 1 8 )  t h a t ,  in p a r t i c u l a r ,  t h e  boundar i e s  of  t h e  t e m p e r a t u r e  i n t e r -  
v a l s  must be located as follows: T I < Tj ~ < T0* < T o. 

Thus, in the case of a monotonically increasing function wO(T) Eq. (9) has at any mo- 
ment of time a unique root in the interval [h I, h=] if the inequalities (i0), 414)-(18) are 
satisfied. 

Let wi(T) be a monotonically decreasing function. At any moment of time we then ob- 
tain from (13) the inequality Tj = 8(wOj) > 8(N~), according to which one can take 

T I = 0 ( N  2)-~Ez>0,  81>0.  (19) 

In this case there exists an ex, such that wi(Tl) > wO4T2 ) > 0. If Eq. (15) is satis- 
fied for T o > T I > 0 values, then similarly to the preceding case, by using (19) we can 
verify the validity of estimates (16)-'(18), guaranteeing for Eq. (9) the existence of a 
unique root in the interval [h I, h o] for any te[0, tk]. 

We provide an estimate of the interval [T', T"] in (ii), (12) at some fixed moment of 
time. If wa(T) is a monotonically increasing function, we select h' = hi* - (Mi*/pTNi), 
h"= h(Sj), @j = 8(N2), and require that N(t), Tj*(t) satisfy the inequalities h' > 0, h" > 
hi* + [L(8 i) - Lj*]/oTN 2. Equation (9) then has a single root hy(t) in the interval [h' , 
h" ]. - 

If wi(T) is a monotonically decreasing function, we select h' = h(@j), T' = 8(NO), and 
requirethat the inequality 0 < h(Sj) < hj* + [L(Oj) - Li*]/pyN 2 be satisfied. There then 
exist a value T" = T(h") > T', h" =h~ + [L(Sj)]/07N e, ~or which conditions (ii), (12) are 
valid, while Eq. (9) has a single roost in the interval [h', h"]. 

Differentiating Eq. (9) with respect to time, we obtain the expression 

. . . . .  N ., w ~ (T~ 
cv(Tj)~/Pj cp(Ti)viT i --2--~-(hj--hi), ~(t, T)= 1 N'(t) (20) 

making it possible to draw several qualitative conclusions. According to (12) we further 
assume that vj > 0, and for definiteness we put N > 0. If the strong discontinuity propa- 
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gates with a constant velocity with a nonuniform st@tionary background T = T*(x), we con- 
clude from Eq. (20) that for dT*/dx > 0 we have sgnTj = sgnvj*, while for dT*/dx < 0 we 
have sgnTj = - sgnvj*. This implies that in this case the temperature increase or de- 
crease behind the front of the strong discontinuity depends on both the direction of the 
temperature gradient ahead of the front and on the relation between the velocity of the 
strong discontinuity and the propagation velocity of the continuous thermal wave at T = T*o 

If the strong discontinuity propagates with a varying velocity in the "cold" back- 
ground T* = 0, q* = 0, we then conclude from Eq. (20) that sgnTj = - sgnN. Consequently, 
in this case the medium temperature increases behind the front moving with a negative ac- 
celeration; the medium temperature decreases behind the front if it moves with a positive 
acceleration. 

2. Transformation of the Heat-Transfer Equations. Based on Eq. (i) we introduce into 
our treatment the function q = q(x, t), whose total differential is dq = phdx - qdt. Taking 
into account Eq. (3), we conclude that along the strong discontinuity line dq + ~(t)dt = 0, 
where 

, (t) = q) - -  [h; (qj - -  q})/(hi - -  h~)]. (21)  

We transform the heat-transfer equations (1)-(2) to the new independent variables ~, t ac- 
cording to the equations 

d~ = d~ @ ~dt,  O/Ox = phO/O~, 018r = O/OF + (~ .-- q) OIO~, 9 h =/= O. (22)  

As a result we obtain the system of equations 

,h t @ (~ - -  q) h~ @ hq~ = O, ~'qt @ q @ 9hL~ + y (~ - -  q) q~ ~ O, L (T) ~ M (h). ( 2 3 )  

The variables ~, t are suitable for studying nonstationary thermal fields containing 
shock thermal waves, since the family of straight lines $ = const in the x, t plane is a 
family of lines of strong discontinuity [2]. 

3~ A Nonstationary Thermal Field between a Mobile Boundary and a Strong Discontinuity. 
Let a strong discontinuity propagate with constant velocity in the nonuniform stationary 
field T = T*(x), q* ~ const. We construct a solution of Eq. (23) for the values xe[xb, xj], 
acquiring the value $ = 0 behind the line of strong discontinuity, $~[0, Sb]" 

The temperature and the specific thermal flow behind the front of the strong disconti- 
nuity are represented in the form of the series 

T : T o @ T 6(~)s ~, q =  qs(~)s  6, 6 ~ 1 ,  s = ~ e x p ( - - k t ) ,  ~ > 0 ,  k > O ,  

To ~ const. (24) 

Here  t h e  r e p e a t e d  s u b s c r i p t  6 i m p l i e s  s u m m a t i o n .  C o n c e r n i n g  t h e  t h e r m o p h y s i c a l  p r o p e r t i e s  
of the medium, we assume that h = ~(T)/~(T), cp(T), s are analytic functions of temper- 
ature. In constructing expansions of these functions in powers of s we apply the equation 
[ii]: 

F (T) -- Fo q- F6 (~) s 8, Fo == F (To), 

F~ (~) ~ Fr176 
= z.a r! ~ Tm,...Tm~, n ~  1. 

r :  l m l - [ - .  . . - } - m r  = n  , m s ~  l 

(25) 

An equation of similar type is also used in carrying out other operations with series. 

The heat-exchange condition at the left boundary: x = Xb, q = qb. The equation of mo- 
tion of the left boundary and the thermal regime on it are related by the equation 

d~dds  = phbd-xdds - -  (~ - -  %)~ks, ~b (a) = O; .~ (s) ~ xb (t), x b .~ xj, ( 26 ) 

following from Eq. (22). 

Ahead of the discontinuity front we have L~T*) = q*(x + ink*), k* > 0, 0 < T*(x) < T*~, 
T*~ = lim x+~T*(x) < ~, x [i, ~)+ AccordinglyT~ = T*[xj(s)], and we find, by inverting 
the dependence, 

N 

l(T~)fl(O) = [k*(~/s)Wf *, ~j(s) = :v ~n ~---, o <  T ~ <  oo, ~tO)# O. 
k s 
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For example: 

)~ (T) -- go , T; = gjg:, (1 - -  A) 
(gx + g2T) (g~ -.~ g;T) g~g3A - -  glg~ ' 

N 

q*g~ < O, e3g~ < O, g5 = g~g~ - -  g~g3, T ) ] , = 0 :  T~*. 

The c a s e  i n  w h i c h  t h e  r e g i o n  o f  v a r i a t i o n  o f  x a h e a d  o f  t h e  f r o n t  i s  a f i n i t e  i n t e r v a l  i s  
t r e a t e d  s i m i l a r l y .  

T h u s ,  t h e  f u n c t i o n  $ i n  Eq. ( 2 1 )  c an  be  r e p r e s e n t e d  by t h e  s e r i e s  

= r  6 6 ~ 1 ,  *0 q*[1 + h * / ( h o  h )1. 

We r e q u i r e  t h a t  t h e  s e r i e s  ( 2 4 )  f o r m a l l y  s a t i s f y  t h e  s y s t e m  ( 2 3 ) .  T h i s  l e a d s  t o  t h e  f o l l o w -  
i n g  recurrence linear equations for the series coefficients 

dT~ =_ u,,T,~ + %q~ -I- ~,~-t (~), dq,~ -= GT,,. q- w,~q~ + ~,~_, (~), n ~ 1, 

u,~A = ~%cokn , v~A == ho (1 - -  ~kn), r,~A = = - -  9)~ohocokn, 

w,~A := co% ( ~ k n -  1), 

~Zn-xA := Yq~oA,~-~ - -  hoB,~-t, ~n-~A =-: Co~)oBn-~ - -  p~,ottoA~-~, Ao = Bo == O, 

n - - I  

A~_I-~ ~ [kc~(n--~.)T,_:  - -  r -- h~q,,_~], ~.~ =- ~.~ cz (q~_z-- q~_l) ,, 
;=I t=o 

n - -  1 

B . _ ,  =:  - + - -  q : )  

l = 0  

(27) 

Here an_l, $n-! consist of expansion coefficients with subscripts not exceeding n - i. 
A nonlinearity of thermophysical medium properties occurs in this class of solution, start- 
ing with the second approximation. The characteristic equation corresponding to the system 
(27) has these roots: 

2 2 4p~ocoh~(~lkn 1) kn, 2m(nOA = CoCo (2%,kn- 1) + V D-~, D ~ =  CoCo + 
( 2 8 )  

i - = l ,  2. 

The b a s i c  c a s e  h e r e  i s  t h a t  i n  w h i c h  yk  > 1,  i . e . ,  D n > 0 ,  n >_ 1,  and  t h e r e  a r e  two 
r e a l  r o o t s .  C l e a r l y ,  t h e  v a r i a n t  D n < 0 o c c u r s  o n l y  f o r  f i n i t e  n < n o < ~ v a l u e s ,  s i n c e  
w i t h  i n c r e a s i n g  n we n e c e s s a r i l y  o b t a i n  D n > 0.  F o r  e x a m p l e ,  i f  ~kn 0 - 1 < 0 ,  n o > 1,  and  
t h e  Co, ~0 ,  I 0 ,  h 0 ,  P v a l u e s  a r e  s u c h  t h a t  t h e  c a s e  D n < 0 ,  n < n 1 < ~ i s  p o s s i b l e ,  t h e n  
t h e r e  e x i s t s  a f i n i t e  number  o f  c o m p l e x  c o n j u g a t e  r o o t s .  T h i s  f a c t  d o e s  n o t  e n t a i l  s u b s t a n -  
t i a l  c h a n g e s  i n  t h e  a l g o r i t h m  o f  s o l u t i o n  c o n s t r u c t i o n :  t h e  f i n i t e  number  o f  s e r i e s  t e r m s  
( 2 4 )  i s  t h e n  c o n s t r u c t e d  by e q u a t i o n s  c o r r e s p o n d i n g  t o  c o m p l e x  r o o t s ,  w h i l e  t h e  s t r u c t u r e  
o f  t h e  f o l l o w i n g  e x p a n s i o n  t e r m s  i s  t h e  same a s  f o r  7k > 1. S i m i l a r  c o n s i d e r a t i o n s  a l s o  
a p p l y  t o  t h e  c a s e  i n  w h i c h  ~kn 2 = 1 a n d  n2 >_ 1 i s  an  i n t e g e r .  The f u r t h e r  c a l c u l a t i o n s  
a r e  c a r r i e d  o u t  f o r  ~k > 1. 

A p p l y i n g  t h e  m e t h o d  o f  v a r i a b l e  c o n s t a n t s  t o  t h e  l i n e a r  i n h o m o g e n e o u s  e q u a t i o n s  ( 2 7 ) ,  
we f i n d  t h e  g e n e r a l  s o l u t i o n  i n  t h e  f o r m  

r,~ : p(n ~) (Jl/) @ %~) exp (m~/)~) -~- p~2) (j}?) _~_ • exp (m}i2)~), ,;k > l, ( 2 9 )  
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q,~ (j}l) -i- %~) exp (m~ I/~) _~ (j~21 + • , e v,~,~ s;, - -  = 

-: t" ' lJ  127 t -1 - - -~  
J}~'> _(~) (1) exp ( - -  nl~,l)~:) ci~, 

0 

3 - __ p(~ ) exp ( - -  nllf-')~) d~. 
0 

Here ~n, <n, n k 1 , are arbitrary constants, therefore it can be assumed that the expansions 
(24), (29) formally contain two arbitrary functions of the same argument s. 

We indicate the region of variation of ~b(S) as a function of the signs of roots of the 
characteristic equation. If ~ > 0, then for ~a < 0, according to (28), we have m~ i) < 0 
and for sufficiently large n we have dmn(i)/dn < 0, i = I, 2; implying $be[0, =). If & > 0, 
~0 > 0, we must have ~be( -~, 0]. In what follows the function ~b(S) is arbitrary. In both 
cases, for sufficiently large n we have exp m(i~$/expmn ( i ) n t z  ~ < i, n _> n 3 _> i, i = i, 2. 

For A < 0 the roots of different sign mn(i) < 0, mn (2) > 0, therefore there exists no 
such finite or infinite region of ~ values, such that exp m~, i = i, 2, are finite for 
any n i. In what follows we choose A > 0. 

Writing down the solution (24), (29) for $ = 0, as well as using an equation of type 
(25), we represent the two functions appearing in conditions (7), (8) in the form of power 
series in s: 

qJ = (T6 -~ ~6) S6, Tj = (p6(1)T6 ,-~ p(2)~6) s 6 , qi ~ ~ c o n <  

Lj = L (To) -q- [Z (To) Ysj + bo_J s 8 , hj = h (To) + [% (To) T~j + a~-l] s 8 

L* = L(T*~) + L~s ~, h ; =  h(T~} ~- h~s a . 
(30) 

Here the quantities an_l, bnll, n ~ i, consists ofexpansioncoefficientwith subscripts not 
exceeding n - i. 

After substituting (30) into (7), (8), we find in the zeroth approximation: 

q* = p N ( h ~ - - % ) ,  vNq* = L ~ - - L 0 .  ( 3 1 )  

I f  N i s  a s s u m e d  known,  an e q u a t i o n  o f  t y p e  ( 9 )  f o l l o w s  f r o m  ( 3 1 ) .  A l s o  a s s u m i n g  t h a t  q* i s  
known, we have 

ho = h l  + [?q*2lp(M o - - M ~ ) ] .  ( 3 2 )  

The  s u f f i c i e n t  e x i s t e n c e  c o n d i t i o n s  o f  a u n i q u e  r o o t  h o o f  Eq.  ( 3 2 )  a r e  s i m i l a r  t o  t h e  
c o r r e s p o n d i n g  c o n d i t i o n s  f o r  e q u a t i o n s  o f  t y p e  ( 9 ) ,  i n  w h i c h  c a s e  t h e  r e q u i r e m e n t  A > 0 i s  
s a t i s f i e d .  I t  i s  f u r t h e r  a s s u m e d  t h a t  t h e  q u a n t i t y  q* i s  g i v e n ,  w h i l e  T O and  N a r e  f o u n d  
from (31), (32). 

In the n-th approximation we obtain a system of linear algebraic equations 

T~ [?N - -  )~ (To)p}l)] ,_ • [?N - -  )~ (To) p~,9)l = b,,-1 - -  L,~, n ~ 1. 
(33) 

Hence one easily finds T n, K n by the Kramer equations [i0]. The determinant of the system 
(33) is nonvanishing since mn (1) ~ mn (a). 

Rearranging Eq. (26) and the solution T($, s), q($, s) behind the front of the strong 
discontinuity, one can determine, arbitrarily within one function Sb(S), the coordinate 
Xb(S) of the left boundary and of the thermal regime on them. 

From the convergence behavior of the series (24), (29) we note the following. The 
series coefficients of the form [J5 (i) exp (mn(i)$)] s 6, i = I, 2, are analytic functions 
of the argument $, vanishing for ~ = 0, while for ~e[0, i) the convergence is maximal for 
se(0, ~] of the series [12]. This implies that the series converge uniformly for g~[0, i), 
s~(0, ~ ] .  
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Taking into account the comments made above on the behavior of the roots mn(i), i = 
i, 2, and applyin$ the method of majorant functions [12], we conclude that series of the 
type [~ exp (mn(1)~)] s 6, [K~ exp (mn(i)~)] s 6 converge for ~e[0, e), se(0, ~], 0 < e < 
I, 0 < ~ < i, if T*(x) is an analytic function of the argument x. 

We sum up. At the initial moment of time t = 0 and for x = 0 we have a strong discon- 
tinuity iT} = T(0, =) - T*(0), {q} = q(0, ~) - q*, coinciding with the mobile boundary 
Xb(0) = Xb(~) = 0. The discontinuity front, on which conditions (7), (8) are satisfied, 
is displaced with a constant velocity N in the nonuniform stationary field T = T*(x), 
q* ~ const, x ~ 0. The functions Xb(S), qb(s), corresponding to the mobile boundary region, 
are determined within one arbitrary function gb(S). The series (24), appearing in Eqs. 
(29), (32), (33) ~ and representing the temperature and specific thermal flow for xe[xb, xj], 
t > 0, converge for ~e[0, e), se(0, ~], 0 < g < i, 0 < ~ < i. 

NOTATION 

x, a Cartesian coordinate; t, time; ~, a new independent variable; T, temperature; q, 
specific thermal flux; ~, thermal conductivity coefficient of the medium; Cp, specific heat 
capacity; ~, relaxation time of the thermal flux; h, enthalpy; p, density; N, displacement 
velocity of strong discontinuity; w, propagation velocity of small thermal perturbations; 
L(T) and M(h), auxiliary functions; mn(i], roots of the characteristic equation; and ~n, ~n, 
arbitrary constants. The subscripts are the following: b, value at the mobile boundary of 
the region x = xb(t); j, value on the strong discontinuity line x = xj(t); *, thermal field 
parameters ahead of the strong discontinuity; ~, function value at x + ~, independent vari- 
ables as subscripts denote partial differentiation; a dot over the function sign denotes 
ordinary differentiation; and 6, a sum/nation subscript. 
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